

BAKER COLLEGE STUDENT LEARNING OUTCOMES

ME2110A Materials Science 4 Semester Hours

Student Learning Outcomes & Enabling Objectives

- 1. Introduce Material Science
 - a. Develop Learning Objectives & Historical Perspectives
 - b. Classify Materials
 - c. Appraise Advanced Materials
 - d. Decide upon Modern Materials
 - e. Contrast Processing/Structure/Properties of Materials
- 2. Explain how Atomic Structure & Interatomic Bonding affects Material Science
 - a. Demonstrate Fundamental Concepts of Atoms
 - b. Make use of Atomic Structure and the Periodic Table
 - c. Compare Bonding Forces (Primary, Secondary)
 - d. Explain Criteria of Molecular Structure
 - e. Determine Bonding Type-Material Classifications
- 3. Explain the Structure of Crystalline Solids
 - a. Apply the Fundamental Concepts
 - b. Construct Unit Cells (FCC, BCC, etc.)
 - c. Create of Metallic Crystal Structures
 - d. Make use of Density Computations
 - e. Compare Polymorphism and Allotropy
 - f. Assess Crystal Systems
 - g. Determine Point Coordinates
 - h. Evaluate Crystallographic Directions & Planes
 - i. Justify Linear and Planar Densities
 - j. Establish relationships of Close-Packed Crystal Structures
 - k. Model Crystalline and non-crystalline materials
 - I. Compare Single Crystals & Polycrystalline Materials
 - m. Determine Anisotropy
 - n. Dissect X-Ray Diffraction: Determination of Crystal Structures
 - o. Explain Non-crystalline Solids
- 4. Explain Imperfections in Solids
 - a. Identify Vacancies and Self-Interstitials
 - b. Interpret Importance of Impurities in Solids
 - c. Appraise Specification of Composition
 - d. Identify Linear Defects

- e. Compare Linear and Interfacial Defects
- f. Determine Materials of Importance Crystals
- g. Calculate measurements regarding Bulk / Volume Defects
- h. Determine Atomic Vibrations
- i. Estimate Basic Concepts of Microscopy
- j. Explain the Importance of Microscopy Techniques
- k. Explain Grain-size Determination
- 5. Define Diffusion
 - a. Discuss organization of Diffusion Mechanisms
 - b. Categorize Fick's First Law
 - c. Examine Fick's Second Law
 - d. Inspect Factors that Influence Diffusion
 - e. Discuss simplification of Diffusion in Semi-conducting Materials
 - f. Discuss functions of Other Diffusion Paths
- 6. Define Mechanical Properties of Metals
 - a. Discuss Concepts of Stress & Strain
 - b. Identify Stress-strain Behavior
 - c. Examine Anelasticity
 - d. Discuss the Importance of Elastic Properties of Materials
 - e. Measure Tensile Properties
 - f. Compare True Stress and True Strain
 - g. Prioritize Elastic Recovery After Plastic Deformation
 - h. Compare Compressive, Shear and Torsional Deformation
 - i. Appraise Hardness
 - j. Determine Variability of Material Properties
 - k. Distinguish both Design and Safety Factors
- 7. Explain Dislocations and Strengthening Mechanisms
 - a. Discover Characteristics of Dislocations
 - b. Examine Slip Stems
 - c. Discuss Function of Slip in Single Crystals
 - d. Discuss relationships regarding Plastic Deformation of Polycrystalline Materials
 - e. Discuss Deformation by Twinning
 - f. Justify of Strengthen by Grain Size Reduction
 - g. Measure of Solid-Solution Strengthening
 - h. Discuss Analysis of Strain Hardening
 - i. Use of Recovery, Recrystallization and Grain Growth
- 8. Explain How Failure is Specifically Defined
 - a. Apply Fundamentals of Fracture
 - b. Examine Ductile Fracture
 - c. Classify of Brittle Fracture
 - d. Discuss Function of Principles of Fracture Mechanics
 - e. Distinguish specific Fracture Toughness Testing
 - f. Discuss Assessment of Cyclic Stresses

- g. Discuss Importance of the S-N curve and Fatigue
- h. Discuss Simplification of Crack Initiation and Propagation
- i. Categorize of Factors that Affect Fatigue Life
- j. Discover Environmental Effects of Failure Mechanisms
- k. Discover of Generalized Creep Behavior
- I. Distinguish Stress and Temperature Effects
- m. Compare of Data Extrapolation Methods
- n. Discuss Assessment of Alloys for High-Temperature Use
- 9. Define Phase Diagrams
 - a. Discuss Solubility Limits and Phases
 - b. Construct of Microstructure
 - c. Develop of Phase Equilibria
 - d. Experiment with One Component Phase Diagrams
 - e. Develop Microstructure in Isomorphous Alloys
 - f. Appraise of Mechanical Properties for Isomorphous Alloys
 - g. Estimate Binary Eutectic Systems
 - h. Discuss Importance of Development of Microstructure Eutectic Alloys
 - i. Discuss Equilibrium Diagrams Having Intermediate Phase or Compounds
 - j. Rate Eutectoid and Peritectic Reactions
 - k. Measure Congruent Phase Transformations
 - I. Appraise Ceramic and Ternary Phase Diagrams
 - m. Define The Gibbs Phase Rule
 - n. Discuss The Iron-Iron Carbide Phase Diagram
 - o. Discuss Marking of the Development of Microstructure in Iron-Carbon Alloys
 - p. Prioritize The Influence of Other Alloying Elements
- 10. Label Phase Transformation: Development of Microstructure and Alteration of Mechanical Properties
 - a. Discover Basic Concepts of Phase Transformation
 - b. Examine The Kinetics of Phase Transformations
 - c. Compare of Metastable Versus Equilibrium States
 - d. Discuss Relationships of Isothermal Transformation Diagrams
 - e. Discuss Importance of Continuous Cooling Transformation Diagrams
 - f. Interpret Mechanical Behavior of Iron-Carbon Alloys
 - g. Experiment with Tempered Martensite
- 11. Define of Applications and Processing of Metal Alloys
 - a. Develop of Ferrous Alloys
 - b. Compare to Nonferrous Alloys
 - c. Dissect Forming Operations
 - d. Discuss Casting
 - e. Inspect the Annealing Process
 - f. Examine of Heat Treatment of Steels
 - g. Define of Precipitation Hardening

- 12. Relate Polymer Structures to Material Structures
 - a. Examine Hydrocarbon Molecules
 - b. Develop Polymer Molecules
 - c. Evaluate The Chemistry of Polymer Molecules
 - d. Compare Molecular Weight, Shape, Structure and Configurations of Polymers
 - e. Contrast Thermoplastic and Thermosetting Polymers
 - f. Categorize Copolymers
 - g. Examine Polymer Crystallinity
 - h. Evaluate Defects of Polymers
 - i. Measure Diffusion in Polymeric Materials
- 13. Define Characteristics, Applications and Processing of Polymers
 - a. Determine Stress-Strain Behavior
 - b. Examine of Macroscopic Deformation
 - c. Examine of Viscoelastic Deformation
 - d. Compare Fracture of Polymers
 - e. Evaluate Misc. mechanical Characteristics
 - f. Discuss the importance of Deformation of Semi crystalline Polymers
 - g. Justify Deformation of Elastomers
 - h. Inspect of Crystallization Process and Melting Process
 - j. Categorize the Glass Transition Phenomenon
 - k. Discuss Melting and Glass Transition Temperatures
 - I. Discuss Criteria regarding Factors that Influence Melting and Glass Transition Temperatures
 - m. Measure Polymerization & Polymer Additives
 - n. Discuss Importance of Forming Techniques for Plastics
 - o. Categorize Fabrication of Elastomers, Fibers and Films

These SLOs are not approved for experiential credit.

Effective: Summer 2020