

BAKER COLLEGE STUDENT LEARNING OUTCOMES

ME 3210 Solid Mechanics 3 Semester Hours

Student Learning Outcomes & Enabling Objectives

- 1. Evaluate normal stresses in axially loaded members and average shear stresses in direct shear
 - a. Calculate internal loadings in 2D and 3D members
 - b. Define stress
 - c. Determine average normal stress in an axially loaded bar
 - d. Determine average shear stresses in members in direct shear, bolts, and welded connections
 - e. Describe allowable stress design and limit state design
- 2. Analyze strain
 - a. Describe deformation
 - b. Define normal and shear strains
- 3. Investigate mechanical properties of materials
 - a. Describe apply the tension and compression test
 - b. Examine stress—strain behavior of ductile and brittle materials
 - c. Define elastic modulus, strain energy, Poisson's ratio, and shear modulus
- 4. Analyze elastic deformation and stresses in axially loaded members
 - a. Define Saint-Venant's principle
 - b. Solve elastic deformation of an axially loaded member
 - c. Determine thermal stress
 - d. Examine stress concentrations
- 5. Evaluate stresses and deformation of members loaded in torsion
 - a. Apply the principle of power transmission.
 - b. Apply the torsion and angle of twist equations.
 - c. Examine stress concentrations
- 6. Investigate the behavior of members in bending
 - a. Calculate shear and moment and construct their diagrams
 - b. Analyze bending deformation of a straight member
 - c. Apply the flexure formula
 - d. Examine stress concentrations
- 7. Evaluate shear stresses in members under transverse shear
 - a. Apply the shear formula
 - b. Determine shear flow in built-up and thin-walled members

- 8. Solve for stresses under combined loadings
 - a. Determine stresses in pressure vessels
 - b. Analyze stresses in members due to internal loads occurring simultaneously on a member's cross section.
 - c. Design beams and shafts
- 9. Investigate stress transformation
 - a. Define plane stress
 - b. Determine stresses on arbitrary planes, and maximum stresses and their planes using stress transformation equations
 - c. Construct Mohr's circle to obtain stresses on arbitrary planes, and maximum stresses and their planes
 - d. Determine absolute maximum shear stress
- 10. Analyze strain transformation
 - a. Define plane strain
 - b. Apply general equations of plane-strain transformation
 - c. Examine strain rosettes
 - d. Describe material property relationships for plane stress and plane strain
- 11. Solve for deflection of beams and shafts
 - a. Define the elastic curve
 - b. Determine the slope and displacement by integration
 - c. Apply general equations of plane-strain transformation
 - d. Examine strain rosettes
 - e. Describe material property relationships for plane stress and plane strain
- 12. Explore buckling of columns
 - a. Define critical load
 - b. Describe Euler's formula
 - c. Solve for critical load in columns having various types of supports

These SLOs are not approved for experiential credit.

Effective: Fall 2017