

BAKER COLLEGE STUDENT LEARNING OUTCOMES

ME 3270 MECHANICAL DESIGN

4 Semester Hours

Student Learning Outcomes & Enabling Objectives

- 1. Explore the features of mechanical design
 - a. Describe the differences between analysis and design, design process, and design considerations
 - b. Examine design tools and resources, design engineers professional responsibilities, standards and codes, economics, and safety product liability
 - c. Distinguish stress and strength
 - d. Describe uncertainty, design factor, and factor of safety
 - e. Examine reliability and probability of failure, and relate design factor to reliability
 - f. Describe dimensions and tolerances
- 2. Analyze deflection, stresses, and stiffness
 - a. Solve for deflections using singularity functions, superposition, and Castigliano's theorem
 - b. Examine stress concentration
 - c. Solve for stresses in pressurized cylinders, rotating rings, press and shrink fits, and under temperature effects
 - d. Examine curved beams in bending
 - e. Determine contact stresses
 - f. Examine shock and impact
- 3. Investigate failures resulting from static loading
 - a. Solve problems using failure theories
 - b. Examine modes of fracture
- 4. Investigate fatigue failures resulting from variable loading
 - a. Describe fatigue in metals
 - b. Examine the three major approaches used in the design and analysis for fatigue loading
 - c. Describe S-N diagram, endurance limit, and endurance limit modifying factors
 - d. Examine stress concentrations under fatigue loading
 - e. Analyze fatigue failure for fluctuating stresses
 - f. Analyze fluctuating stresses under combinations of loading modes
 - g. Examine fatigue strength
- 5. Explore screws, fasteners, and the design of non-permanent joints
 - a. Describe thread standards and definitions, mechanics of power screws, and threaded Fasteners.
 - b. Analyze fastener and member stiffness's, and bolt strength
 - c. Analyze joints for preload, external tensile load, fatigue load, and shear
 - d. Relate bolt torque to bolt tension.
 - e. Examine gasketed joints, shear joints, setscrews, keys and pins

- 6. Investigate welded joints
 - a. Describe welding symbols, butt and fillet welds
 - b. Analyze stresses in welded joints in torsion and bending
 - c. Determine the strength of welded joints
 - d. Solve welded joints under static and fatigue loading
 - e. Examine resistance welding adhesive bonding
- 7. Analyze Rolling-Contact Bearings
 - a. Describe bearing types , bearing life, and bearing load life at rated reliability
 - b. Examine bearing survival: reliability versus life
 - c. Relate load, life, and reliability
 - d. Solve bearings for combined radial and thrust loadings
 - e. Examine variable loading, selection of ball, cylindrical, and tapered roller bearings
 - f. Describe design assessment for selected rolling-contact bearings
 - g. Examine lubrication, mounting and enclosure
 - h. Determine shear flow in built-up and thin-walled members
- 8. Explore lubrication and journal bearings
 - a. Examine types of lubrication
 - b. Describe viscosity, Petroff's equation, and hydrodynamic theory
 - c. Examine design considerations and the relations of the variables
 - d. Describe steady-state conditions in self-contained bearings
 - e. Examine clearance, pressure-fed bearings, loads and materials, thrust bearings, and Boundary-lubricated bearings
- 9. Investigate clutches, brakes, couplings, and flywheel
 - a. Solve static analysis problems
 - b. Examine internal expanding rim clutches and brakes
 - c. Examine external contracting rim clutches and brakes
 - d. Describe band-type clutches and brakes
 - e. Examine frictional-contact axial clutches, disk brakes
 - f. Describe cone clutches and brakes
 - g. Examine energy considerations, temperature rise, and friction materials
 - h. Examine miscellaneous clutches, couplings, and flywheels
 - i. Apply general equations of plane-strain transformation
 - j. Examine strain rosettes
 - k. Describe material property relationships for plane stress and plane strain

These SLOs are not approved for experiential credit.

Effective: Spring 2020