

BAKER COLLEGE STUDENT LEARNING OUTCOMES

ME 4710 Introduction to Finite Element Analysis (FEA) 3 Semester Hours

Student Learning Outcomes & Enabling Objectives

- 1. Explore Finite Element Method
 - a. Explain Finite Element Analysis (FEA).
 - b. Review a brief history of finite element method
 - c. Distinguish discrete and continuum structures
 - d. Illustrate various finite element types
 - e. Describe the general steps used in FEA
 - f. Examine typical applications of FEA
 - g. Summarize the advantages of finite element method
- 2. Analyze spring, truss and beam structures
 - a. Define the degrees of freedom at each node
 - b. Derive interpolation and shape functions, and element stiffness matrices
 - c. Examine local and global coordinate systems
 - d. Derive transformation matrices and obtain global stiffness matrix for each element
 - e. Apply direct stiffness method to construct the structural equations
 - f. Apply boundary conditions and solve for displacements, member forces, stresses, and support reactions
 - g. Construct shear and bending moment diagrams for beams
- 3. Evaluate the Behavior of Plane Frames
 - a. Derive transformation matrices and obtain global stiffness matrix for a frame element
 - b. Solve for displacements, member forces, stresses, and support reactions
 - c. Construct shear and bending moment diagrams for frames
- 4. Analyze Plane Stress and Plane Strain Problems Using 2D Elements
 - a. Distinguish plane stress and plane strain
 - b. Derive the stiffness matrix for a constant strain triangular (CST) element
 - c. Describe body and surface forces
 - d. Derive the stiffness matrix for a rectangular element e
 - e. Solve problems using CST and rectangular elements
 - f. Examine the practical considerations in modeling

- 5. Apply FEA to Fluid Flow in Porous Media
 - a. Describe the equations used for steady-state, incompressible, and inviscid fluid flow through and around pipes
 - b. Determine 1D and 2D finite element fluid flow through porous media and around solid objects or through pipes
- 6. Analyze bars, trusses, and planes stress problems for thermal stresses due to temperature change
 - a. Describe the thermal stress problem
 - b. Derive thermal force matrices
 - c. Solve for thermal stresses
- 7. Evaluate trusses, beams, frames, plane stress, and plane strain problems using the commercial FEA software, ANSYS
 - a. Construct finite element models using ANSYS
 - b. Solve problems and post process results
 - c. Compare FEA results with available theoretical and experimental results

These SLOs are not approved for experiential credit.

Effective: Fall 2017